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Abstract
From the early work of Hoffmann–Ostenhof, the electron density ρ(r) for
He-like ions at sufficiently large r has the form Arn exp(−2

√
2I r) where I

is the ionization potential. A derivation of the relation between n and I is
briefly presented. The non-relativistic ionization potential I is then calculated
quantitatively from diffusion quantum Monte Carlo (DMC) calculations, as is
the range of validity of the above asymptotic form for Z � 2. The above
arguments are valid away from Z = Zc, the critical atomic number 0.911 028
at which the ionization potential I tends to zero. Again analytic theory plus
DMC is used at Z = Zc to quantify ρ(r).

PACS number: 31.10.+z

1. Background and outline

It has been known since the work of Hoffmann–Ostenhof and Hoffmann–Ostenhof [1] that, in
atomic units, the ground state density of rare gas atoms with spherical electron density ρ(r)

falls off at sufficiently large r as

ρ(r) ≈ Arn exp(−2
√

2I r) (r → ∞), (1)

where I is the ionization potential.
Here, we are concerned solely with the non-relativistic two-electron He-like series of

atomic ions with atomic number Z. In the early work of Schwartz [2] it was found that in the
limit of large Z we have

ρ(r) = 2Z3

π

[
1 +

2

Z
χ(r)

]
exp(−2Zr), (2)
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where χ(r) was calculated explicitly. Subsequently, March and Pucci [3] used equation (2)
with the Schwartz form of χ(r) to show that, again for sufficiently large Z,

√
2I ≈ Z − 5/8,

n ≈ −(3/4)Z−1 and A = (2Z3/π)[1 − (3/4Z) ln Z + O(Z−1)].
Here we use non-relativistic density functional theory for the He-like series of atomic

ions to first obtain the general relationship between n and I for arbitrary atomic number Z. If
V (r) is the one-body potential of DFT then the constant chemical potential equation reads [4]

µ = δTs[ρ]

δρ(r)
+ V (r), (3)

where Ts[ρ] is the single-particle kinetic energy functional. While Ts[ρ] is still unknown for
general atomic system, for two-electron spin compensated cases like the He atom Ts = TW

where the von Weizsäcker functional is given by [5]

TW = 1

8

∫ |∇ρ|2
ρ

dr. (4)

Since the functional derivative entering equation (3) is readily derived from equation (4),
one finds the well-known von Weizsäcker equation [5]

µ = |∇ρ|2
8ρ

− ∇2ρ

4ρ
+ V (r). (5)

We know from DFT that the self-interaction correction leads to V (r) having the asymptotic
form −1/r as r → ∞ for neutral atoms and to (N − 1 − Z)/r for ions with N electrons [4].
Using spherical symmetry, plus the constancy of the chemical potential µ throughout the entire
inhomogeneous electron density distribution ρ(r) we readily find from equation (5) the result
that

∂V

∂r
= 1

4

∂

∂r

(
ρ ′′

ρ

)
+

1

4

∂

∂r

(
2ρ ′

rρ

)
− 1

8

∂

∂r

(
ρ ′2

ρ2

)
. (6)

The outline of the paper is then as follows. In section 2 equations (6) and (1) will
be combined to derive the index n in terms of atomic number Z and ionization potential I.
The result will be compared with the March and Pucci limit n → −(3/4)Z−1 referred to
above. Section 3 will focus attention on the asymptotic forms of differential equations giving
the density amplitude. Then section 4 deals with the density amplitude

√
ρ for Z near to

the critical value Zc at which I ≈ 0. Section 5 treats the neutral He atom by including
polarizability contribution.

2. Relation between index n in asymptotic form of density, the ionization potential I
and the atomic number Z

Inserting the known asymptotic form (1) into equation (6), the RHS is evidently independent
of the amplitude A and we find the following equation relating the exponent n to the ionization
potential I:

n = 2(Z − 1)√
2I

− 2 (N = 2). (7)

Equation (7) in the Schwartz limit (Z → ∞) leads to

n = 2(Z − 1)

Z − 5/8
− 2 = − 3

4Z
+ O(Z−2), (8)

which recovers the March and Pucci limit [3] given above.
In order to quantify the asymptotic form (1) using equation (7) the non-relativistic

ionization potential I is needed as a function of atomic number Z. To settle this matter,
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Figure 1. Plot of the DMC ionization potential I of He-like atomic ions in the range of nuclear
charges between the critical value Zc = 0.911 028 and Z = 2. Data are in atomic units.

before proceeding to further analytic development in the later sections, we shall next present
diffusion quantum Monte Carlo (DMC) (see, for example, [6]) calculations for (a) I (Z) for Z
from Zc = 0.911 028 to Z = 2 and (b) the range of r over which we can expect the asymptotic
form (1), or its generalization near Zc (see especially section 4).

In figure 1 we plot the ionization potential obtained by the difference between −Z2/2,
the energy of the one-electron ion in atomic units, and the DMC energy of the two-electron
system. The difference between DMC energies and the exact values are within statistical error
which was, in our calculation, smaller than 10−4 atomic units. A simple quadratic fit of such
an ionization potential in terms of Z, in the range of figure 1, gives the following result:

I (Z) ≈ 0.278(Z − Zc) + 0.507(Z − Zc)
2, (9)

which will be considered in section 4.
Finally, in figure 2 we show the radius of the sphere which contains 99% of the total

electron distribution against the nuclear charge Z. It is interesting to note that this radius at
Z = Zc is an order of magnitude larger than that for helium.

3. Density amplitude differential equations in asymptotic regime

It is commonly accepted that the long-range behaviour of the density in an atom is determined
by the solution of the differential equation [1, 7, 8]

−1

2
∇2√ρ +

(
I − Z∗

r

)√
ρ ≈ 0 (r → ∞), (10)
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Figure 2. Plot of the radius R of the sphere containing 99% of total electronic charge for the
He-like ions calculated with DMC in the range of atomic numbers between Zc = 0.911 028 and
Z = 2. The radius is in bohr.

which, for a two-electron atom, is also the limiting form of the DFT Euler equation (3) as r →
∞. Here, Z∗ is an appropriate screened nuclear charge and is intended as the limit, for r → ∞,
of −r(vP + vKS), vP and vKS being, respectively, the Pauli and Kohn–Sham potentials [8].
In our case, namely two electrons in a Coulomb potential −Z/r , the screened nuclear charge
Z∗ is Z − 1 and equation (10) has two limiting forms for Z = Zc and for Z away from Zc.
When Z = Zc, by writing

√
ρ(t2) = φ(t)

t
(r = t2) (11)

we have for φ(t)

t2φ′′ + tφ′ − [8(1 − Zc)t
2 + 1]φ = 0, (12)

which has the solution

φ(t) = K1(
√

8(1 − Zc)t), (13)

K1(x) being the modified Bessel function of the second kind of order 1 [10]. In large r regime,
we can write √

ρ(r) ∝ r−3/4 exp[−
√

8(1 − Zc)r], (14)

with K1(x) → exp(−x)/
√

2x/π as x → ∞, and the asymptotic expression already given by
Hoffmann–Ostenhof et al [9] is recovered.
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Away from Z = Zc, instead, equation (10) can be transformed into the Wittaker
equation [10]

W ′′
k,m +

(
−1

4
+

k

x
+

1
4 − m2

x2

)
Wk,m = 0 (15)

with m = 1/2. The asymptotic behaviour of a Whittaker function Wk,1/2(x) is xk exp(−x/2).
Thus, starting from (10) and setting φ(r) = r

√
ρ(r) one has

φ′′ +

[
−2I +

2(Z − 1)

r

]
φ = 0, (16)

which reduces to (15) (m = 1/2) by the change of variable t = 2
√

2I r and with
k = (Z − 1)/

√
2I . This leads to (r → ∞)√
ρ(r) ∝ r(Z−1)/

√
2I−1 exp(−

√
2I r) (17)

as already known from the early work of Hoffmann–Ostenhof and Hoffmann–Ostenhof [1].
The two limiting solutions (14) and (17) suggest, for the density amplitude at large r, a

more general expression in the form√
ρ(r) = g(r) exp(−

√
2I r), (18)

with g(r) satisfying the condition√
ρc(r) = lim

Z→Zc

g(r), (19)

with exp(−√
2I r) being 1 in this limit. In the next two sections we deal with the derivation

of such a more general function g(r).

4. Asymptotic density amplitude in range of atomic number near critical value Zc

In order to describe the long-range behaviour of the electron density in a range of atomic
numbers for the He-like ions, we want to determine the function g(r) which gives the density
amplitude as described at the end of the previous section. From the density amplitude
equation (10) in the large r regime or equivalently the von Weiszäcker equation (5) we get

rg′′ + (2 − 2
√

2I r)g′ − 2(
√

2I + 1 − Z)g = 0, (20)

which becomes Kummer’s equation [10] in the variable x = 2
√

2Ir , namely

xφ′′ + (2 − x)φ′ − aφ = 0, (21)

where φ(x) = φ(2
√

2I r) = g(r) and a = (
√

2I + 1 − Z)/
√

2I . Equation (21) is solved
by the Kummer special function U(a, 2, x) [10]. Such a function is related to the density
amplitude only in the limit of large r where vxc(r) → −1/r . A good starting point for this
study is the integral form of U valid for a > 1 (Z < 1). More precisely

�(a)U(a, 2, x) =
∫ ∞

0
e−xt

[
t

1 + t

]a−1

dt. (22)

The function under integration is 0 at the origin and at infinity and becomes sharply peaked
for large values of x. Because such x is large when r is large, we can recover the desired
long-range regime by evaluating the integral using the saddle point method. We must expand
the following function at the second order in t around the minimum t0:

f (t) = −xt + (a − 1) ln

[
t

1 + t

]
≈ f (t0) +

1

2
f ′′(t0)(t − t0)

2. (23)
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Here we have

t0 = 1

2

(
−1 +

√
1 +

4(a − 1)

x

)
(24)

and equation (22) becomes

�(a)Ū(a, 2, x) =
√

2π

−f ′′(t0)
exp[f (t0)] (r → ∞). (25)

The density amplitude
√

ρ(r) in equation (18) is then determined by the form

g(r) = A�(a)Ū(a, 2, 2
√

2Ir) (26)

and is valid from the critical point Z = Zc to Z → 1−. A is a constant dependent on the
atomic number Z. We can illustrate now how equation (25) works for different values of Z. Let
us start from the critical point. At this point we have Z = Zc = 0.911 028, I = 0 and a = ∞.
If we consider a large we can include the behaviour in the proximity of the critical point.

When a → ∞ we have

t0 ≈
√

a − 1

x

f (t0) ≈ −2
√

(a − 1)x

f ′′(t0) ≈ −2

√
x3

a − 1

(27)

and g(r) becomes

g(r) = A

√
π

√
a − 1√
x3

exp[−2
√

(a − 1)x]

= A

2I

√
π

2

√
1 − Z

2
r−3/4 exp[−2

√
2(1 − Z)r]. (28)

This equation, which reduces to that of Hoffman–Ostenhof et al [9] for Z = Zc, is valid also
in the neighbourhood of the critical point where I → 0. The I factor in the denominator
is absorbed by the constant A, equation (18) being normalized to some fraction of the total
number of electrons. The set of equations above is valid when 4(a − 1)/x 	 1 (see equation
(24)). This essentially means that (1−Z)/r 	 I for some large r for which the corresponding
sphere contains about 99% of electrons. From equation (9) and figure 2, equation (28) should
be valid in the region Zc � Z < 0.93.

Now we can consider the different situation for which a is finite and r sufficiently large
to determine 4(a − 1)/x 
 1. This condition implies (

√
2I + 1 − Z)/I 
 r . As for the

previous case we have

t0 ≈ a − 1

x
f (t0) ≈ −(a − 1)[ln x + 1 + ln(a − 1)] f ′′(t0) ≈ − 2x2

a − 1
(29)

therefore

g(r) = A

√
π

a − 1
(a − 1)a−1 e1−ax−a

= A

√
π

a − 1
(a − 1)a−1 e1−a[2

√
2I r](Z−1)/

√
2I−1, (30)

which relates to the Hoffman–Ostenhof and Hoffman–Ostenhof [1] result when the coefficient
multiplying the factor involving 2

√
2Ir is subsumed, say, into a constant B which is dependent

on Z.
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Table 1. Parameters entering equation (31) for the density amplitude of neutral He at large r.

Parameter Value
√

2I 1.344 46
β 0.743 79
A1 0.070 87
A2 − 0.004 24
A3(α = 0) 0.001 49
A3(α = 0.3) − 0.035 70
k(α = 0.3) 1.137 92

5. Inclusion of dipolar polarizability of He+ for neutral He atom

If we include the dipolar polarizability of He+ in the description of the long-range behaviour
of the density, as shown by Almbladh and von Barth [11] and March [12], we must expand the
pre-factor of the exponential term in (18) at least up to the third order in power of 1/r , namely√

ρ(r) ≈ krβ−1

[
1 +

A1

r
+

A2

r2
+

A3

r3

]
exp(−

√
2I r). (31)

For Z = 2 we have via equation (7) β = 1/
√

2I . Neglecting at first the effect of the
polarizability α the coefficients Aj are (exact solution of Kummer equation with vxc → −1/r)

A1 = β(β − 1)

2[
√

2I (β − 1) − 1]
A2 = A1(β − 1)(β − 2)

2[
√

2I (β − 2) − 1]
A3 = A2(β − 2)(β − 3)

2[
√

2I (β − 3) − 1]
.

(32)

If α is considered, because vxc ≈ −1/r − α/2r4 [12], A3 must be modified into

A3 = A2(β − 2)(β − 3)

2[
√

2I (β − 3) − 1]
+

α

2[
√

2I (β − 3) − 1]
. (33)

By way of an example, α for He+ has been estimated by means of sum rules (see, for
example, [13]). These lead to 0.25 � α � 0.33 in atomic units. Final data to compute the
density amplitude (31) are recorded in table 1.

The Kummer expansion (no polarizability) is rapidly convergent and the effect of α on
A3 is quite evident from table 1. Finally, we can define the constant k in equation (31) simply
by choosing some large radius r0 and calculating the ratio

k =
√

ρ(r0)

r
β−1
0

[
1 + A1

r0
+ A2

r2
0

+ A3

r3
0

]
exp(−√

2I r0)
. (34)

For r0 = 2 atomic units in the neutral He atom, k is found to have the value 1.137 92. A plot
of r

√
ρ(r) from (31) compared with the corresponding DMC function is shown in figure 3.

The agreement is remarkable.

6. Summary and future directions

Not withstanding the analytic intractability of the Schrödinger equation for the ground-state
wavefunction of He-like ions, we have demonstrated here how a combination of analysis based
on DFT and numerical simulations using DMC allows considerable analytic progress to be
made on the long-range asymptotic behaviour of the electron density. Since the Schwartz
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Figure 3. Comparison between the function φ(r) = r
√

ρ(r), relative to neutral helium, computed
at DMC level (broken line) and from the theoretical expected behaviour (dashed line) following
the derivation given in section 4. Data are in atomic units.

result (2) covers the large atomic number limit, the present study has focused especially on
the range Zc � Z � 2, where Zc = 0.911 028 is the critical value of Z in which the ionization
potential I becomes zero.

The main achievement of the present study near the critical value Zc is then embodied
in equation (18) where g(r) is given in equation (26), the corresponding ionization potential
taking the form (9).

Furthermore, for the particular case of the neutral He atom with Z = 2, we have utilized
the known long-range form of V (r) in equations (5) and (6), namely

V (r) = −1

r
− α

2r4
+ · · · , (35)

where α is the dipolar polarizability of the He+ ion to derive the density amplitude
√

ρ(r) in
the form (31), where the coefficients A1–A3 are obtained in equations (32) and (33).

The importance of combining the above analytical studies with DMC is evidenced
particularly in the figures giving the, essentially exact within statistical errors, non-relativistic
ionization potential I from Zc to the neutral He atom and in showing the dramatic increase
in the importance of the long-range tail of ρ(r) as Zc is approached, the effect already being
pronounced in the case of the hydrogen negative ion.

As to future directions, we believe it would be of particular interest to attempt some
generalization of the present study to embrace the correlated one-particle density matrix
γ (r, r ′). While the one-body density matrix of DFT is essentially idempotent, the many-body
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matrix γ must satisfy γ 2 < γ , corresponding to fractional occupation numbers of the natural
orbitals, which bring γ (r, r ′) into diagonal form. One limit especially connected with the
present study is that in which r ′ say becomes very large, when γ (r, r ′) takes the form

γ (r, r ′) ≈ f (r)ρ(r ′)1/2 (36)

at all r. We have characterized the density amplitude
√

ρ at large argument rather fully in
the present study. Obviously f (r) must tend to

√
ρ(r) as r also becomes sufficiently large.

Knowledge of f (r) for all r should be obtainable in the future from DMC and this seems a
future project of some importance for the He-like ions.
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